0 of 23 Questions completed
Questions:
You have already completed the quiz before. Hence you can not start it again.
Quiz is loading…
You must sign in or sign up to start the quiz.
You must first complete the following:
0 of 23 Questions answered correctly
Your time:
Time has elapsed
You have reached 0 of 0 point(s), (0)
Earned Point(s): 0 of 0, (0)
0 Essay(s) Pending (Possible Point(s): 0)
Evaluate the following numbers.
(a) [math]\dfrac{1}{2+i}[/math]
(b) [math]\dfrac{5-2i}{4+3i}[/math]
(c) [math]\dfrac{6+12i}{5-5i}[/math]
(a) [math]+[/math] [math]i[/math]
(b) [math]+[/math] [math]i[/math]
(c) [math]+[/math] [math]i[/math]
Evaluate the following numbers.
(a) [math]\left(\dfrac{-3+3i}{3+i}\right)^*[/math]
(b) [math]\dfrac{(2i)^*}{1-2i}[/math]
(c) [math]\dfrac{(5i)^*}{(2-\sqrt{3}i)^*}[/math]
(d) [math]((4+7i)^{3})^*-((4+7i)^*)^3[/math]
(a) [math]+[/math] [math]i[/math]
(b) [math]+[/math] [math]i[/math]
(c) [math]+[/math] [math]i[/math]
(d) [math]+[/math] [math]i[/math]
Let [math]z=a+bi[/math] be a complex number where [math]a<0[/math] and [math]b>0[/math] are constants. In which quadrant does the number [math]z^*[/math] lie?
Let [math]z[/math] be a complex number and [math]z\neq0[/math]. If [math]z^*=-z[/math], which of the following statements about [math]z[/math] is true?
Let [math]x, y[/math] be complex numbers. Which statement(s) is/are true?
Let [math]z_1=3+5i[/math] and [math]z_2=-1+2i[/math], what is the value of [math]|z_1-z_2|[/math]?
Let [math]a, b[/math] be real numbers. If [math]\dfrac{6-7i}{a+bi}=2+i[/math], what is the value of [math]a+b[/math]?
If [math]x=a+bi[/math] is the solution to the equation [math](1+i)x-(4+i)=(5-2i)[/math], what is the value of [math]a[/math]?
Let [math]x[/math] be a complex number.
(a) [math]i(x+x^*)[/math] is a
(A) real number
(B) pure imaginary number
(C) neither
(b) [math](x-x^*)^2[/math] is a
(A) real number
(B) pure imaginary number
(C) neither
(c) [math]\dfrac{x}{x^*}[/math] is a
(A) real number
(B) pure imaginary number
(C) neither
(a)
(b)
(c)
Let [math]x[/math] be a complex number.
(a) [math](x^2)^*[/math] is a
(A) real number
(B) pure imaginary number
(C) neither
(b) [math]Im(x^*)[/math] is a
(A) real number
(B) pure imaginary number
(C) neither
(c) [math]x^2+(x^*)^2[/math] is a
(A) real number
(B) pure imaginary number
(C) neither
(a)
(b)
(c)
Consider three points [math]O, A[/math], and [math]B[/math] on the complex plane. [math]O[/math] is at the origin. If [math]A=-13i[/math] and [math]B=8+7i[/math], what is the area of triangle [math]OAB[/math]?
Let [math]a[/math] be a positive real number that satisfying [math]|2+ai|\leq3[/math]. If the maximum possible of [math]a[/math] is [math]\sqrt{b}[/math] where [math]b[/math] is an integer, what is the value of [math]b[/math]?
Let [math]z=a+bi[/math] be a complex number where [math]a[/math] and [math]b[/math] are real numbers. If [math]|z|=m[/math], express the following numbers in terms of [math]m[/math].
(a) [math]-a-bi[/math]
(b) [math]b-ai[/math]
(c) [math]2b+2ai[/math]
(a)
(b)
(c)
Let [math]z=5-9i[/math] be a complex number. Find the positive number [math]a[/math] such that [math]|z+a|=15[/math].
[math]|3-4i|=[/math]
Evaluate the following numbers.
(a) [math]\dfrac{-2+3i}{-3-4i}[/math]
(b) [math](-3+2i)(i^{23})[/math]
(a) [math]+[/math] [math]i[/math]
(b) [math]+[/math] [math]i[/math]
Find the rationals [math]a[/math] and [math]b[/math] such that [math]\frac{2-3i}{2a+bi} =3+2i[/math].
[math]a=[/math] , [math]b=[/math]
If [math](-2-\sqrt{-32})-(4+\sqrt{-18})=a+b\sqrt{2}i[/math] where [math]a[/math] and [math]b[/math] are constants, what is the value of [math]a+b[/math]?
Evaluate [math]\displaystyle{\frac{10+2i}{-1-5i}}[/math].
[math]+[/math] [math]i[/math]
If [math](6-\sqrt{-7})(-4+\sqrt{-7})=a+b\sqrt{c}[/math] where [math]a, b[/math], and [math]c[/math] are integers, what is the value of [math]a+b+c[/math]?
[math]\displaystyle{\frac{\sqrt{20}}{\sqrt{-4}}}=[/math]
Evaluate [math]\displaystyle{\frac{1-4i}{-2+6i}}[/math].
[math]+[/math] [math]i[/math]
In the figure above, points [math]F[/math] and [math]G[/math] represent two complex numbers. Which point represents the sum of these two numbers?