0 of 17 Questions completed
Questions:
You have already completed the quiz before. Hence you can not start it again.
Quiz is loading…
You must sign in or sign up to start the quiz.
You must first complete the following:
0 of 17 Questions answered correctly
Your time:
Time has elapsed
You have reached 0 of 0 point(s), (0)
Earned Point(s): 0 of 0, (0)
0 Essay(s) Pending (Possible Point(s): 0)
If [math]f(x)=-7x+120[/math], what is the minimum integer [math]n[/math] such that [math]f(n)[/math] is negative?
The figures below show the graphs of [math]f(x)[/math] and [math]g(x)[/math]. Answer the following questions. Note: If your answer is undefined, write “undef”.
(a) [math]f(-5)+g(1)[/math]
(b) [math]f(g(-1)+1)[/math]
(c) How many integer solutions to the inequality [math]f(x)\geq2[/math]?
(d) How many constants [math]c[/math] satisfy [math]g(c)=1[/math]?
(e) Let [math]p(x)=f(x)+g(x)[/math]. Find [math]p(2)[/math].
(f) Let [math]q(x)=f(x)g(x)[/math]. Find [math]q(5)[/math].
(g) Let [math]r(x)=g(-f(3x-1))[/math]. Find [math]r(2)[/math].
(h) How many intersection of [math]f(x)[/math] and [math]g(x)[/math] are there?
(a)
(b)
(c)
(d)
(e)
(f)
(g)
(h)
The figure below shows the graph of function [math]f(x)[/math]. The domain of [math]f(x)[/math] is [math][-6,6][/math] and [math]f(-1.5)=2[/math].
(a) Find all possible values of [math]m[/math] such that [math]f(m)=3[/math]. Write your answers in ascending order.
(b) Find the conditions of [math]k[/math] such that the equation [math]f(x)=k[/math] has 4 solutions.
(c) Evaluate [math]f(f(5))[/math].
(d) If [math]g(x)[/math] is a linear function and [math]g(x)[/math] and [math]f(x)[/math] have common [math]x[/math]-intercept and [math]y[/math]-intercept, what is the equation of [math]g(x)[/math]?
(e) Find the domain of [math]f(g(x))[/math].
(f) Solve the inequality [math]f(x)<g(x)[/math].
(a) [math]m=[/math] , , ,
(b) [math]k\in[/math]( , ][math]\cup[/math][ , )
(c) [math][/math]
(d) [math]g(x)=[/math] [math]x+[/math]
(e) [ , ]
(f) [math]<x<[/math] or [math]x>[/math]
Let [math]f(x)=-2|x|+3[/math] and [math]g(x)=\sqrt{x}-5[/math].
(a) Evaluate [math]f(g(4))[/math].
(b) Find the [math]x[/math]-intercept(s) of [math]f(g(x))[/math]. If you have two or more answers, write the smallest one.
(a)
(b)
The figure below shows the graph of [math]f(x)[/math].
(a) How many possible integers [math]n[/math] such that [math]f(n)[/math] is negative?
(b) The summation of the [math]x[/math]-intercepts and the [math]y[/math]-intercept of [math]f(x)[/math] is \underline{ (positive/negative/zero) }
(c) Let [math]m[/math] be a positive number. If [math]g(x)=mx-1[/math] and [math]f(x)[/math] have three intersections, then the range of [math]m[/math] is [math]a<m<b[/math] where [math]a[/math] and [math]b[/math] are constants, what is the value of [math]ab[/math]?
(a)
(b)
(c)
The figure below shows the graph of [math]f[/math], which of the following statements is/are true?
The function [math]h(t)=20t-5t^2[/math] gives the height of an object [math]t[/math] seconds after it has been thrown into the air. Which statement is true?
(Calculator) [math]f(x)=\sqrt{2x-1}+k[/math], [math]f(3)=15.28[/math], then the value of [math]k[/math]?
(Calculator) [math]f(x)=x^5-2x+7[/math], [math]-1\leq x\leq1[/math], what is the minimum value of [math]f(x)[/math]?
If [math]f(x)=3xg(x)[/math] and [math]f(3)=6[/math], then [math]g(3)[/math]
If [math]f(x)=\sqrt{x^3+8}[/math], how much does [math]f(x)[/math] increase as [math]x[/math] increases from 4 to 5?
The figure below shows the graphs of functions [math]f[/math] and [math]g[/math]. Which of the following is closest to a value of [math]x[/math] such that [math]f(x)-g(x)=0[/math]?
(Calculator) If [math]f(x)=-x^3+4x^2-2x+2[/math], the maximum value of [math]f(x)[/math] on the interval [math][-2,4][/math] occurs when [math]x=[/math]
(Calculator) What is the range of the function [math]f[/math] defined by [math]f(x)=3x^{-2}-2[/math]?
A portion of the graph of [math]y=f(x)[/math] is shown below. Which of the following is the graph of [math]y=-|f(x)|[/math]?
If the function [math]f[/math] is symmetric with respect to the line [math]x=3[/math] and if [math]f(-1)=-1[/math], what is the value of [math]f(7)[/math]?
(Calculator) A function [math]f[/math] has the property that [math]f(\frac{x}{2})=\sqrt{\frac{1+f(x)}{2}}[/math] for [math]0\leq x\leq1[/math]. If [math]f(a)=0[/math], where [math]0\leq a\leq1[/math], what is the value of [math]f(\frac{a}{4})[/math]?