0 of 17 Questions completed
Questions:
You have already completed the quiz before. Hence you can not start it again.
Quiz is loading…
You must sign in or sign up to start the quiz.
You must first complete the following:
0 of 17 Questions answered correctly
Your time:
Time has elapsed
You have reached 0 of 0 point(s), (0)
Earned Point(s): 0 of 0, (0)
0 Essay(s) Pending (Possible Point(s): 0)
Consider the quadratic function [math]f(x)=mx^2+4x+3[/math] where [math]m[/math] is a real number. If [math]f(x)[/math] is always positive when [math]a<m<b[/math], what is the value of [math]a+b[/math]?
The figure shows the graph of the quadratic function [math]f(x)=ax^2+bx+c[/math]. Identify the following signs. Write “[math]+[/math]”, “[math]-[/math]”, “[math]0[/math]” or “unknown”
(a) [math]a[/math]
(b) [math]b[/math]
(c) [math]c[/math]
(d) [math]b^2-4ac[/math]
(e) [math]a+b+c[/math]
(f) [math]a-b+c[/math]
(g) [math]9a+3b+c[/math]
(h) [math]4a+2b[/math]
(a)
(b)
(c)
(d)
(e)
(f)
(g)
(h)
Consider a quadratic function [math]f(x)=ax^2+bx+c[/math] where [math]a, b, [/math] and [math]c[/math] are constants. If [math]a<0[/math] and [math](3,15)[/math] is the vertex of [math]f(x)[/math], which of the following value(s) must be positive?
Consider a quadratic function [math]f(x)=x^2+2x+3[/math]. If line [math]\ell: y=x+k[/math] is a tangent line of [math]f(x)[/math] (i.e. [math]\ell[/math] touches [math]f(x)[/math]) where [math]k[/math] is a constant, what is the value of [math]k[/math]?
Let [math]f(x)=-x^2+kx+1[/math] be a quadratic function where [math]k[/math] is an integer. If the graph of [math]f(x)[/math] is below the horizontal line [math]y=3[/math], what is the maximum value of [math]k[/math]?
Let [math]f(x)[/math] and [math]g(x)[/math] be two quadratic functions with the same [math]x[/math]-intercept. Which statement(s) is/are true?
Find the constant [math]k[/math] such that the equation [math]x^2=x+k[/math] has only one real solution.
The figure shows the graph of the quadratic function [math]f(x)=ax^2+bx+c[/math]. Identify the following signs. Identify the following signs. Write “[math]+[/math]”, “[math]-[/math]”, “[math]0[/math]” or “unknown”
(a) [math]a[/math]
(b) [math]b[/math]
(c) [math]c[/math]
(d) [math]b^2-4ac[/math]
(e) [math]a+b+c[/math]
(f) [math]a-b+c[/math]
(a)
(b)
(c)
(d)
(e)
(f)
If [math]f(x)=ax^2+bx+3[/math] and has exactly one zero at [math]x=\frac{1}{2}[/math]. If [math]a\neq0[/math], find [math]ab[/math].
For what is the maximum integer [math]k[/math] would the graph of [math]y=x^2-2x+k[/math] cut the x-axis twice?
How many [math]x[/math]-intercepts does [math]f(x)=16x^2-8x+5[/math] have?
Which of the following equations has two complex, nonreal roots?
The graph of [math]f(x)=ax^2+bx+c[/math] is shown below.
(a) Find the value of [math]a[/math].
(b) The value of [math]b^2-4ac[/math] is: (write “[math]+[/math]”, “[math]-[/math]”, or “[math]0[/math]”)
(c) The roots of [math]f(x)[/math] are: (write “real” or “nonreal”)
(d) What is the maximum value of [math]f(x)[/math]?
(e) [math]f(6)=[/math]
(a)
(b)
(c)
(d)
(e)
How many [math]x[/math]-intercepts does [math]g(x)=-(x-30)^2+15[/math] have?
If [math]x^2+4x=3k[/math], what value of [math]k[/math] can make the equation has only one root?
For which of the following values of [math]a[/math] and [math]c[/math] does the equation [math]ax^2+3x+c=0[/math] have no real roots?
Given a quadratic function [math]f(x)=ax^2+bx+c[/math] with [math]a<0[/math] and two zeros at [math]x=-5[/math] and [math]x=3[/math], which of the following descriptions about [math]f(x)[/math] is correct?