Let [math]A(0,0)[/math] and [math]B(5,0)[/math] be two points on the [math]xy[/math]-plane. Point [math]P[/math] is on the curve [math]y=\sqrt{r^2-x^2}[/math] such that [math]\overline{PA}[/math] is perpendicular to [math]\overline{PB}[/math] where [math]0<r<5[/math].
(a) If the area of triangle [math]APB[/math] is [math]\dfrac{1}{2}\sqrt{f(r)}[/math], what is [math]f(r)[/math]?
(b) Use the arithmetic-geometric mean inequality to find the maximum area of triangle [math]APB[/math].