0 of 7 Questions completed
Questions:
You have already completed the quiz before. Hence you can not start it again.
Quiz is loading…
You must sign in or sign up to start the quiz.
You must first complete the following:
0 of 7 Questions answered correctly
Your time:
Time has elapsed
You have reached 0 of 0 point(s), (0)
Earned Point(s): 0 of 0, (0)
0 Essay(s) Pending (Possible Point(s): 0)
Use the parametric form to represent the line which passes through two points [math]A(1,7)[/math] and [math]B(9,-1)[/math].
[math]x=[/math] [math]+[/math] [math]t[/math] , [math]y=[/math] [math]+[/math] [math]t[/math] where [math]t[/math] is a real number.
Let [math]A(-4,3)[/math] and [math]B(9,-1)[/math] be two points. [math]C[/math] is a third point such that [math]AC:AB=2:5[/math] and [math]A, B[/math], and [math]C[/math] are collinear. If [math]C[/math] is in the second quadrant, find the coordinates of [math]C[/math].
( , )
Let [math]A(1,6), B(-4,-1)[/math], and [math]C[/math] be three points. If [math]P(0,-2)[/math] is another point that satisfies $$\overrightarrow{PA}+\overrightarrow{PB}+\overrightarrow{PC}=\overrightarrow{0}$$
what are the coordinates of [math]C[/math]?
( , )
(Calculator) Consider a unit circle with center [math]O(0,0)[/math]. Two points [math]A[/math], [math]B[/math] are on the unit circle and [math]\angle AOB=40^\circ[/math]. Let [math]P[/math] be a point satisfying [math]\overrightarrow{OP}=t\overrightarrow{OA}+s\overrightarrow{OB}[/math] where [math]t[/math] and [math]s[/math] are nonnegative numbers and [math]s+t\leq1[/math], then all possible [math]P[/math]s can form a region. What is the area of the region?
Consider a triangle [math]ABC[/math]. Point [math]D[/math] is on [math]\overline{BC}[/math]. [math]\overline{AD}[/math] is the angle bisector of [math]\angle A[/math]. Suppose [math]AB=12, AC=6[/math] and [math]BC=9[/math].
(a) Find [math]BD[/math] and [math]DC[/math].
(b) If [math]\overrightarrow{AD}=p\overrightarrow{AB}+q\overrightarrow{AC}[/math] where [math]p[/math] and [math]q[/math] are constants, what are [math]p[/math] and [math]q[/math]?
(c) Evaluate [math]\cos B[/math].
(d) If [math]AD=\sqrt{a}[/math] where [math]a[/math] is an integer, what is the value of [math]a[/math]?
(e) Let [math]I[/math] be the incenter of [math]ABC[/math]. If [math]\overrightarrow{AI}=x\overrightarrow{AB}+y\overrightarrow{AC}[/math]. where [math]x[/math] and [math]y[/math] are constants, what are [math]x[/math] and [math]y[/math]?
(a) [math]BD=[/math] , [math]DC=[/math]
(b) [math]p=[/math] , [math]q=[/math]
(c)
(d)
(e) [math]x=[/math] , [math]y=[/math]
Find the intersection of lines [math]L_1: \begin{cases}x=1+2t\\y=4-3t\end{cases}[/math] and [math]L_2: \begin{cases}x=-7-5t\\y=5+2t\end{cases}[/math].
( , )
Consdier triangle [math]ABC[/math] with vertices [math]A(-1,-5), B(-4,6)[/math], and [math]C(3,-1)[/math]. [math]D[/math] is on [math]\overline{BC}[/math] and [math]3DB=4DC[/math]. Find the coordinates of [math]D[/math] and the area of [math]ABD[/math].
[math]D=[/math]( , )
The area of [math]ABD[/math] is