0 of 14 Questions completed
Questions:
You have already completed the quiz before. Hence you can not start it again.
Quiz is loading…
You must sign in or sign up to start the quiz.
You must first complete the following:
0 of 14 Questions answered correctly
Your time:
Time has elapsed
You have reached 0 of 0 point(s), (0)
Earned Point(s): 0 of 0, (0)
0 Essay(s) Pending (Possible Point(s): 0)
Let [math]\overrightarrow{a}=\textbf{i}-\textbf{j}, \overrightarrow{b}=3\textbf{i}+4\textbf{j}[/math], and [math]\overrightarrow{c}=-12\textbf{i}+5\textbf{j}[/math]. Find
(a) [math]\overrightarrow{a}\cdot\overrightarrow{b}[/math]
(b) [math]\|\overrightarrow{a}+\overrightarrow{b}\|[/math]
(c) [math]\overrightarrow{a}\cdot(\overrightarrow{b}+\overrightarrow{c})[/math]
(d) [math]\cos\theta=p\sqrt{2}[/math] where [math]p[/math] is a rational number and [math]\theta[/math] is the angle between [math]\overrightarrow{a}[/math] and [math]\overrightarrow{b}[/math], what is the value of [math]p[/math]?
(a)
(b)
(c)
(d)
Let [math]ABCD[/math] be a parallelogram. Given that [math]AB=6[/math] and [math]BC=5[/math], find [math]\overrightarrow{AC}\cdot\overrightarrow{BD}[/math].
Consider a regular hexagon [math]ABCDEF[/math]. Given that [math]AB=1[/math], find
(a) [math]\overrightarrow{AB}\cdot\overrightarrow{AF}[/math]
(b) [math]\overrightarrow{AB}\cdot\overrightarrow{AC}[/math]
(c) [math]\overrightarrow{CB}\cdot\overrightarrow{DF}[/math]
(d) [math]\overrightarrow{AB}\cdot\overrightarrow{BC}[/math]
(e) [math]\overrightarrow{CF}\cdot\overrightarrow{BE}[/math]
(a)
(b)
(c)
(d)
(e)
Let [math]A(1,3), B(-2,-1)[/math], and [math]C(0,5)[/math] be three points.
(a) Find [math]\overrightarrow{AB}[/math] and [math]\overrightarrow{AC}[/math].
(b) If [math]\cos\theta=\dfrac{a}{\sqrt{b}}[/math] where [math]a[/math] and [math]b[/math] are positive integers and [math]\theta[/math] is the angle between [math]\overrightarrow{AB}[/math] and [math]\overrightarrow{AC}[/math], what is the value of [math]\dfrac{a}{b}[/math]?
(c) Find the area of triangle [math]ABC[/math].
(d) Find the unit vectors [math]\overrightarrow{u}[/math] parallel to [math]\overrightarrow{AB}[/math].
(e) If [math]\dfrac{1}{\sqrt{p}}(q\textbf{i}-r\textbf{j})[/math] is a unit vector perpendicular to [math]\overrightarrow{AC}[/math] where [math]p, q[/math], and [math]r[/math] are positive integers, what is the value of [math]p+q+r[/math]?
(a)
Vector [math]AB[/math] is i[math]+[/math] j
Vector [math]AC[/math] is i[math]+[/math] j
(b)
(c)
(d) [math]\pm[/math]( i+ j)
(e)
Given that [math]\overrightarrow{a}=3\textbf{i}+4\textbf{j}[/math] and [math]\overrightarrow{b}=-2\textbf{i}+\textbf{j}[/math], find
(a) [math]\text{proj}_{\vec{b}}\vec{a}[/math]
(b) [math]\text{proj}_{\vec{a}}\vec{b}[/math]
(a) i[math]+[/math] j
(b) i[math]+[/math] j
Let [math]\overrightarrow{a}[/math] and [math]\overrightarrow{b}[/math] be nonzero and nonparallel vectors. Suppose [math]\theta[/math] is the angle between [math]\overrightarrow{a}[/math] and [math]\overrightarrow{b}[/math]. Which of the following statements is/are true?
Let [math]A(3,4)[/math] and [math]B(-15,8)[/math] be two points.
(a) Find [math]\cos\angle AOB[/math] where [math]O[/math] is the origin.
(b) Find the area of [math]AOB[/math].
(c) In triangle [math]AOB[/math], point [math]C[/math] is on [math]\overline{OB}[/math]. If [math]\overline{AC}\perp\overline {OC}[/math], find the coordinates of [math]C[/math].
(a)
(b)
(c) ( , )
Consider a parallelogram formed by two vectors [math]\overrightarrow{u}=a\textbf{i}+b\textbf{j}[/math] and [math]\overrightarrow{v}=c\textbf{i}+d\textbf{j}[/math]
(a) Find the area of the parallelogram in terms of [math]a, b, c[/math], and [math]d[/math].
(b) Use the formula in (a) to find the area of the triangle with vertices [math](1,2), (2,5)[/math], and [math](3,4)[/math].
(a) | – |
(b)
Let [math]\overrightarrow{u}=3\textbf{i}-4\textbf{j}[/math] and [math]\overrightarrow{v}=-1\textbf{i}+6\textbf{j}[/math] be two vectors. Find the constant [math]t[/math] such that [math]\overrightarrow{u}+t\overrightarrow{v}[/math] is perpendicular to [math]\overrightarrow{v}[/math].
Let [math]A(1,-3), B(-3,-1)[/math], and [math]C(3,-2)[/math] be three points.
(a) Find [math]\overrightarrow{AB}[/math] and [math]\overrightarrow{AC}[/math].
(b) Find [math]2\overrightarrow{AB}+\overrightarrow{AC}[/math].
(c) Find [math]\cos\theta[/math] where [math]\theta[/math] is the angle between [math]\overrightarrow{AB}[/math] and [math]\overrightarrow{AC}[/math]
(d) Let [math]D[/math] be a point. If [math]ABCD[/math] is a parallelogram, find the coordinates of [math]D[/math].
(e) Find the area of [math]ABCD[/math].
(f) Find [math]\text{proj}_{\overrightarrow{AC}}\overrightarrow{AB}[/math].
(g) Find [math]\|\text{proj}_{\overrightarrow{AB}}\overrightarrow{AC}\|^2[/math].
(a)
Vector [math]AB[/math] is i[math]+[/math] j
Vector [math]AC[/math] is i[math]+[/math] j
(b) i[math]+[/math] j
(c)
(d) ( , )
(e)
(f) i[math]+[/math] j
(g)
(Calculator) Consider vectors [math]\overrightarrow{a}=3\textbf{i}-4\textbf{j}, \overrightarrow{b}=\textbf{i}-\textbf{j}[/math] and [math]\overrightarrow{c}=-7\textbf{i}+24\textbf{j}[/math].
(a) Find [math]\overrightarrow{a}\cdot(2\overrightarrow{b}-\overrightarrow{c})[/math].
(b) The magnitude and direction angle of [math]\overrightarrow{a}+\overrightarrow{b}[/math].
(c) Let [math]\overrightarrow{u}[/math] be a unit vector with direction angle [math]\theta[/math] where [math]\theta[/math] is in the second quadrant. If [math]\overrightarrow{u}[/math] is parallel to [math]\overrightarrow{c}[/math], what is [math]\overrightarrow{u}[/math]?
(d) Let [math]\overrightarrow{v}[/math] be a unit vector with direction angle [math]\theta[/math] where [math]\theta[/math] is in the third quadrant. If [math]\overrightarrow{v}[/math] is perpendicular to [math]\overrightarrow{b}[/math], what is [math]\overrightarrow{v}[/math]?
(e) What is the angle between [math]\overrightarrow{a}+\overrightarrow{b}[/math] and [math]\overrightarrow{a}-\overrightarrow{b}[/math]?
(a)
(b)
Magnitude:
Direction angle: degrees
(c) i[math]+[/math] j
(d) i[math]+[/math] j
(e) degrees
Let [math]\overrightarrow{a}[/math] and [math]\overrightarrow{b}[/math] be unit vectors. If [math]\overrightarrow{a}\cdot\overrightarrow{b}=\dfrac{1}{4}[/math], find [math]\|\overrightarrow{a}-2\overrightarrow{b}\|[/math].
Let [math]ABC[/math] be a triangle satisfying [math]AB=3, BC=\sqrt{7}[/math], and [math]CA=2[/math]. Let [math]O[/math] be its circumcenter.
(a) [math]\overrightarrow{AO}\cdot\overrightarrow{AB}=[/math]
(A) [math]\dfrac{1}{2}\|\overrightarrow{AB}\|^2[/math]
(B) [math]\dfrac{1}{2}\|\overrightarrow{AC}\|^2[/math]
(C) [math]\dfrac{1}{2}\|\overrightarrow{AO}\|^2[/math]
(D) [math]\dfrac{1}{2}\|\overrightarrow{BC}\|^2[/math]
(b) [math]\overrightarrow{AO}\cdot\overrightarrow{AC}=[/math]
(A) [math]\dfrac{1}{2}\|\overrightarrow{AB}\|^2[/math]
(B) [math]\dfrac{1}{2}\|\overrightarrow{AC}\|^2[/math]
(C) [math]\dfrac{1}{2}\|\overrightarrow{AO}\|^2[/math]
(D) [math]\dfrac{1}{2}\|\overrightarrow{BC}\|^2[/math]
(c) Find constants [math]x[/math] and [math]y[/math] such that [math]\overrightarrow{AO}=x\overrightarrow{AB}+y\overrightarrow{AC}[/math].
(a)
(b)
(c) [math]x=[/math] , [math]y=[/math]
Let [math]ABC[/math] be a triangle satisfying [math]AB=3, BC=\sqrt{7}[/math], and [math]CA=2[/math]. Let [math]H[/math] be its orthocenter.
(a) [math]\overrightarrow{AH}\cdot\overrightarrow{AB}=[/math]
(A) [math]\overrightarrow{AB}\cdot\overrightarrow{AB}[/math]
(B) [math]\overrightarrow{AC}\cdot\overrightarrow{AC}[/math]
(C) [math]\overrightarrow{AB}\cdot\overrightarrow{BC}[/math]
(D) [math]\overrightarrow{BC}\cdot\overrightarrow{AC}[/math]
(E) [math]\overrightarrow{AB}\cdot\overrightarrow{AC}[/math]
(b) [math]\overrightarrow{AH}\cdot\overrightarrow{AC}=[/math]
(A) [math]\overrightarrow{AB}\cdot\overrightarrow{AC}[/math]
(B) [math]\overrightarrow{AB}\cdot\overrightarrow{AC}[/math]
(C) [math]\overrightarrow{AB}\cdot\overrightarrow{BC}[/math]
(D) [math]\overrightarrow{BC}\cdot\overrightarrow{AC}[/math]
(E) [math]\overrightarrow{AB}\cdot\overrightarrow{AC}[/math]
(c) Find constants [math]x[/math] and [math]y[/math] such that [math]\overrightarrow{AH}=x\overrightarrow{AB}+y\overrightarrow{AC}[/math].
(a)
(b)
(c) [math]x=[/math] , [math]y=[/math]