0 of 15 Questions completed
Questions:
You have already completed the quiz before. Hence you can not start it again.
Quiz is loading…
You must sign in or sign up to start the quiz.
You must first complete the following:
0 of 15 Questions answered correctly
Your time:
Time has elapsed
You have reached 0 of 0 point(s), (0)
Earned Point(s): 0 of 0, (0)
0 Essay(s) Pending (Possible Point(s): 0)
Let [math]\overrightarrow{a}=2\textbf{i}+2\textbf{j}+\textbf{k}, \overrightarrow{b}=-3\textbf{i}+0\textbf{j}+3\textbf{k},[/math] and [math] \overrightarrow{c}=\textbf{i}-1.5\textbf{j}+\textbf{k}[/math]. Find
(a) [math]3\overrightarrow{a}\cdot(\overrightarrow{b}-2\overrightarrow{c})[/math]
(b) [math]\|\overrightarrow{b}+2\overrightarrow{c}\|^2[/math]
(c) [math]\overrightarrow{b}\times\overrightarrow{a}[/math]
(d) [math]\text{proj}_{\vec{a}}\overrightarrow{c}[/math]
(a)
(b)
(c) i[math]+[/math] j[math]+[/math] k
(d) i[math]+[/math] j[math]+[/math] k
If the area of the triangle with vertices [math]A(6,0,6), B(2,8,6)[/math], and [math]C(6,4,5)[/math] is [math]\sqrt{a}[/math] where [math]a[/math] is an integer, what is [math]a[/math]?
Two vectors [math]\overrightarrow{u}=6\textbf{i}-\textbf{j}+3\textbf{k}[/math] and [math]\overrightarrow{v}=-1\textbf{i}+3\textbf{j}+2\textbf{k}[/math] are
The figure shows a regular tetrahedron [math]D-ABC[/math] (the four faces are equilateral triangles). [math]E[/math] is the midpoint of [math]\overline{BC}[/math] and [math]O[/math] is the center of triangle [math]ABC[/math]. Suppose [math]DA=a[/math].
(a) Find [math]\cos\theta[/math] where [math]\theta[/math] is the angle between [math]\overline{DE}[/math] and [math]\overline{EA}[/math].
(b) If [math]DO=\dfrac{\sqrt{p}}{3}a[/math] where [math]p[/math] is an integer, what is [math]p[/math]?
(c) If the volume of [math]D-ABC[/math] is [math]\dfrac{\sqrt{2}}{r}a^3[/math] where [math]r[/math] is an integer, what is the value of [math]r[/math]?
(a)
(b)
(c)
The figure to the right shows a box. [math]AD=AB=3[/math] and [math]DH=2[/math].
(a) Evaluate [math]\overrightarrow{AF}\cdot\overrightarrow{HA}[/math].
(b) If [math]\overrightarrow{AM}=a\overrightarrow{AB}+b\overrightarrow{AD}+c\overrightarrow{AE}[/math] where [math]a, b[/math], and [math]c[/math] are constants and [math]M[/math] is the midpoint of [math]\overline{CG}[/math], what are [math]a, b[/math], and [math]c[/math]?
(c) What is the volume of [math]E-AFH[/math]?
(d) If the distance between [math]E[/math] and the plane [math]AFH[/math] is [math]p\sqrt{51}[/math] where [math]p[/math] is a rational number, what is the value of [math]p[/math]?
(a)
(b) [math]a=[/math] , [math]b=[/math] , [math]c=[/math]
(c)
(d)
(Triangular inequality) Let [math]\overrightarrow{a}[/math] and [math]\overrightarrow{b}[/math] be two vectors. Which of the following inequalities must be true?
Let [math]\overrightarrow{a}=3\textbf{i}+12\textbf{j}-4\textbf{k}[/math] and [math]\overrightarrow{b}=\textbf{i}-\textbf{j}+\textbf{k}[/math].
(a) How many distinct unit vectors are parallel to [math]\overrightarrow{a}[/math]? If your answer is infinite, write “Inf”.
(b) How many distinct unit vectors are perpendicular to [math]\overrightarrow{b}[/math]? If your answer is infinite, write “Inf”.
(a)
(b)
Consider a plane [math]E[/math], a line [math]L[/math], and three points [math]A, B[/math], and [math]C[/math] in [math]\mathbb{R}^3[/math]. [math]A[/math] is not on [math]E[/math] while [math]B, C[/math] and [math]L[/math] are. [math]L[/math] passes through [math]C[/math] but not [math]B[/math]. Given that [math]\overline{AB}\perp E[/math] and [math]\overline{BC}\perp L[/math]. [math]\overline{AC}[/math] is
(Direction cosine) Consider a point [math]A(6,3,2)[/math]. Let [math]\alpha, \beta, \gamma[/math] be acute angles between [math]\overrightarrow{OA}[/math] and the [math]x[/math]-axis, [math]y[/math]-axis, and [math]z[/math]-axis respectively.
(a) [math]\cos\alpha=[/math] , [math]\cos\beta=[/math] , [math]\cos\gamma=[/math]
(b) [math]\cos^2\alpha+\cos^2\beta+\cos^2\gamma=[/math]
Consider three points [math]O(0,0,0), A(3,-2,6)[/math], and [math]B(-2,2,-1)[/math]. If point [math]C[/math] is on segment [math]\overline{OA}[/math] such that [math]\overline{BC}[/math] is perpendicular to [math]\overline{OA}[/math], find the coordinates of [math]C[/math].
( , , )
Let [math]\overrightarrow{a}=3\textbf{i}+4\textbf{k}, \overrightarrow{b}=-5\textbf{i}+12\textbf{j}[/math] and [math]\overrightarrow{c}=5\textbf{i}-3\textbf{j}+4\textbf{k}[/math] be three vectors. Find
(a) [math]\cos\theta[/math] where [math]\theta[/math] is the angle between [math]\overrightarrow{a}[/math] and [math]\overrightarrow{b}[/math].
(b) the area of the triangle constructed by [math]\overrightarrow{a}[/math] and [math]\overrightarrow{c}[/math].
(c) [math]4\overrightarrow{a}+3(\overrightarrow{b}-\overrightarrow{c})[/math].
(a)
(b)
(c) i[math]+[/math] j[math]+[/math] k
Find a vector perpendicular to vectors [math]\overrightarrow{u}=1\textbf{i}+2\textbf{j}+3\textbf{k}[/math] and [math]\overrightarrow{v}=4\textbf{i}+5\textbf{j}+6\textbf{k}[/math].
Note: Each box contains a whole number
i[math]-[/math] j[math]+[/math] k
Let [math]\overrightarrow{u}=t\textbf{i}+3\textbf{j}+(t-1)\textbf{k}[/math] and [math]\overrightarrow{v}=1\textbf{i}+t\textbf{j}+2t\textbf{k}[/math] be two vectors where [math]t[/math] is a real number. Find [math]t[/math] such that [math]\overrightarrow{u}\cdot\overrightarrow{v}=\|\overrightarrow{u}\|\|\overrightarrow{v}\|[/math]. If there is no [math]t[/math] that satisfies the equation, write “None”
Which of the following statement(s) is/are true?
Which of the following statement(s) is/are true?