0 of 19 Questions completed
Questions:
You have already completed the quiz before. Hence you can not start it again.
Quiz is loading…
You must sign in or sign up to start the quiz.
You must first complete the following:
0 of 19 Questions answered correctly
Your time:
Time has elapsed
You have reached 0 of 0 point(s), (0)
Earned Point(s): 0 of 0, (0)
0 Essay(s) Pending (Possible Point(s): 0)
Let [math]c[/math] be a positive real number. If rational function [math]f(x)=\displaystyle{\frac{1}{x^2+cx+5}}[/math] has only one asymptote when [math]c>\sqrt{a}[/math] where [math]a[/math] is an integer, what is the value of [math]a[/math]?
Let [math]f(x)=\dfrac{(x-1)^2(x+2)(2x+3)}{(x-1)(x+2)^2(x-3)}[/math]. Which of the following statements is true?
Let [math]f(x)=\dfrac{x^4+x^3-x^2-x-5}{x^2+x+2}[/math] and [math]g(x)[/math] be a polynomial function. If [math]h(x)=f(x)-g(x)[/math] has a horizontal asymptote [math]y=0[/math], find [math]g(x)[/math].
[math]x^3+[/math] [math]x^2+[/math] [math]x+[/math]
If [math]y=a[/math] is a horizontal asymptote of [math]\displaystyle{\frac{-5x^2+4x-3}{3x^2-4x+5}}[/math] where [math]a[/math] is a constant, what is the value of [math]a[/math]?
If [math]y=ax+b[/math] is a slant asymptote of [math]\displaystyle{\frac{2x^3-9x^2-2x-15}{x^2-4x-5}}[/math] where [math]a[/math] and [math]b[/math] are constants, what is the value of [math]a+b[/math]?
How many asymptotes does [math]\displaystyle{\frac{x-1}{x^3+1}}[/math] have?
Write the title of the appropriate graph below the corresponding formula. Please write Roman numerals
(a) [math]y=\dfrac{x^2-x-2}{x^2-3x}[/math]
(b) [math]y=\dfrac{2x^2+6x+4}{x^2+3x}[/math]
(c) [math]y=\dfrac{x-1}{x^2-2x-3}[/math]
(d) [math]y=\dfrac{x-2}{x^2-3x+2}[/math]
(e) [math]y=\dfrac{1-x}{x^2+x-6}[/math]
(f) [math]y=\dfrac{x^2+x+1}{x+1}[/math]
(g) [math]y=\dfrac{2x^2-7x+3}{x-3}[/math]
(h) [math]y=\dfrac{6x}{x^2+1}[/math]
(i) [math]y=\dfrac{-x^2+4x-3}{x-2}[/math].
(a)
(b)
(c)
(d)
(e)
(f)
(g)
(h)
(i)
What is the [math]y[/math]-coordinate of the hole in the graph of [math]f(x)=\dfrac{x-5}{x^2-25}[/math]?
The function [math]f(x)=\dfrac{ax^2+x-7}{9x^2+bx+4}[/math] has a horizontal asymptote at [math]y=c[/math] and exactly one vertical asymptote. If [math]b[/math] is positive, what is [math]\dfrac{a}{bc}[/math]?
Find the minimum value of [math]c[/math] such that the graph of [math]f(x)=\dfrac{x}{7x^3-5x^2+cx}[/math] has only one vertical asymptotes
Generate a plausible rational function for the graph above.
Identify any [math]x[/math] values for which the expression is undefined: [math]\dfrac{x-2}{x+1}\div\dfrac{2x-8}{x^2-4}[/math]
What is the equation of the graph as a transformation of the parent graph [math]f(x)=\dfrac{1}{x}[/math]? Assuming there is no scaling.
Which [math]g(x)[/math] represents the function [math]f(x)=x^2[/math] with holes at [math]-2[/math] and 2?
How many integers [math]c[/math] such that the graph [math]f(x)=\dfrac{x^2-1}{x^2-cx+4}[/math] has no vertical asymptotes?
Which of the following graphs have a horizontal asymptote?
I. [math]f(x)=\displaystyle{\frac{2x^2}{(x+3)(x-5)}}[/math]
II. [math]g(x)=\displaystyle{\frac{-8(x+5)(x-2)(3x+1)}{x^2-16}}[/math]
III. [math]h(x)=\displaystyle{\frac{-1}{x^2+7x+6}}[/math]
IV. [math]k(x)=\displaystyle{\frac{4x^2-25}{2x^2-3x-5}}[/math]
Let [math]f(x)=\displaystyle{\frac{x^2}{x+5}}[/math]. Which of the following statements is true about the graph?
Given [math]f(x)=\displaystyle{\frac{(2x+3)(x-5)}{(x+1)(x-5)}}[/math], find the exact location of the hole.
Match the function to the graph. Not all graphs will be used.
(a) [math]f(x)=\displaystyle{\frac{x+2}{x^2-4}}[/math]
(b) [math]f(x)=\displaystyle{\frac{4-x^2}{x+2}}[/math]
(c) [math]f(x)=\displaystyle{\frac{x^2}{(x-2)(x+3)}}[/math]
(d) [math]f(x)=\displaystyle{\frac{x}{(x-2)(x+3)}}[/math]
(e) [math]f(x)=\displaystyle{\frac{1}{x(x-2)(x+3)}}[/math]
(f) [math]f(x)=\displaystyle{\frac{x^2}{x-2}}[/math]
(a)
(b)
(c)
(d)
(e)
(f)