0 of 22 Questions completed
Questions:
You have already completed the quiz before. Hence you can not start it again.
Quiz is loading…
You must sign in or sign up to start the quiz.
You must first complete the following:
0 of 22 Questions answered correctly
Your time:
Time has elapsed
You have reached 0 of 0 point(s), (0)
Earned Point(s): 0 of 0, (0)
0 Essay(s) Pending (Possible Point(s): 0)
If points [math]A(6,0,6), B(2,2,0), C(2,0,8)[/math] and [math]D(8,k,6)[/math] are all on plane [math]E[/math], what is the value of [math]k[/math]?
Find the equation of plane [math]E[/math] passing through point [math](6,2,0)[/math] and parallel to plane [math]x-3y+4=0[/math].
[math]x+[/math] [math]y+[/math] [math]z=[/math]
Consider plane [math]x-2y-2z=24[/math] and sphere [math]\Gamma[/math] with center [math](9,0,-3)[/math] and radius [math]2[/math]. Which of the following best represents the intersection of [math]\Gamma[/math] and the plane?
(Triple intercepts form) If [math]E[/math] is a plane that passes through [math](a,0,0), (0,b,0)[/math], and [math](0,0,c)[/math] where [math]a, b[/math], and [math]c[/math] are nonzero real numbers, what is the equation of [math]E[/math]?
[math]x+[/math] [math]y+[/math] [math]z=1[/math]
Find the equations of the following planes.
(a) A plane containing point [math](1,0,4)[/math] and line [math]-x+1=y-2=0.5z[/math].
(b) A plane containing lines [math]\begin{cases}x=2+t\\y=-2t\\z=6+3t\end{cases}, t\in\mathbb{R}[/math] and [math]\begin{cases}x=6-t\\y=4+2t\\z=5-3t\end{cases}, t\in\mathbb{R}[/math].
(a) [math]x+[/math] [math]y+[/math] [math]z=[/math]
(b) [math]x+[/math] [math]y+[/math] [math]z=[/math]
If [math]L[/math] is a line that passes through points [math](2,4,7), (3,0,4)[/math], what is the equation of [math]L[/math]?
Note: Each box contains a whole number
[math]x=3+[/math] [math]t[/math]
[math]y=0-[/math] [math]t[/math]
[math]z=4-[/math] [math]t[/math]
where [math]t[/math] is a real number.
If [math]L[/math] is a line that passes through point [math](8,1,6)[/math] and is parallel to vector [math]-\textbf{i}+3\textbf{k}[/math], what is the equation of [math]L[/math]?
Note: Each box contains a whole number
[math]x=[/math] [math]-[/math] [math]t[/math]
[math]y=[/math] [math]+[/math] [math]t[/math]
[math]z=[/math] [math]+[/math] [math]t[/math]
where [math]t[/math] is a real number.
The intersection of planes [math]x+3y-z=7[/math] and [math]2x-y+z=2[/math] is a line. What is the equation of the line?
Note: Each box contains a whole number
[math]x=[/math] [math]-[/math] [math]t[/math]
[math]y=[/math] [math]+[/math] [math]t[/math]
[math]z=-4+[/math] [math]t[/math]
where [math]t[/math] is a real number.
(Calculator) Find the acute angle between planes [math]E_1: 2x+y-2z=5[/math] and [math]E_2: 4y-5z=10[/math].
degrees
Find the acute angle between line [math]x=\dfrac{y-1}{-1}=\dfrac{3z}{2}[/math] and plane [math]x+2y-z=8[/math].
degrees
(Calculator) Consider point [math]P(9,2,1)[/math] and plane [math]E:3x+2y-6z=4[/math], find [math]Q\in E[/math] such that [math]PQ[/math] is minimum.
( , , )
(Calculator) Let [math]L_1:\displaystyle{\frac{x-7}{4}=\frac{2-y}{4}=-(z+6)}[/math] and [math]L_2:\displaystyle{\frac{x+5}{3}=\frac{y-2}{-4}=\frac{z-1}{-2}}[/math] be two skewed lines. If [math]P\in L_1[/math] and [math]Q\in L_2[/math] are points on the common perpendicular line, find the coordinates of [math]P[/math] and [math]Q[/math].
[math]P=[/math]( , , )
[math]Q=[/math]( , , )
Consider three lines [math]L_1: \begin{cases}x=2-t\\y=3+t\\z=4+2t\end{cases}[/math], [math]L_2: \begin{cases}x=3+2t\\y=17+3t\\z=-4-6t\end{cases}[/math] and [math]L_3: \begin{cases}x=t\\y=1-6t\\z=4\end{cases}[/math].
(a) Find the intersection of [math]L_1[/math] and [math]L_2[/math].
(b) Find the equation of plane [math]E[/math] containing both [math]L_1[/math] and [math]L_2[/math].
(c) [math]L_3[/math] and [math]E[/math] are
(A) parallel
(B) perpendicular
(C) neither parallel nor perpendicular
(d) If the distance between [math]L_3[/math] and [math]E[/math] is [math]\dfrac{a}{\sqrt{b}}[/math] where [math]a[/math] and [math]b[/math] are integers and [math]b[/math] is a prime number, what is the value of [math]a+b[/math]?
(a) ( , , )
(b) [math]x+[/math] [math]y+[/math] [math]z=[/math]
(c)
(d)
(Calculator) Consider line [math]L: \begin{cases}x=2+t\\y=3+2t\\z=5-t\end{cases}, t\in\mathbb{R}[/math] and point [math]P(-8,4,7)[/math].
(a) Find the coordinates of [math]Q\in L[/math] such that [math]\overline{PQ}\perp L[/math].
(b) If the distance between [math]P[/math] and [math]L[/math] is [math]\sqrt{a}[/math] where [math]a[/math] is a rational number, what is the value of [math]a[/math]?
(a) ( , , )
(b)
Which of the following conditions cannot determine a unique plane?
Consider planes [math]E_1, E_2[/math], and [math]E_3[/math]. Suppose [math]E_1[/math] is parallel to [math]E_2[/math] but not parallel to [math]E_3[/math]. Which of the following statement(s) is/are true?
Consider pyramid [math]A-BCDE[/math] with vertices [math]B(2,2,0), C(-2,2,0), D(-2,-2,0)[/math], and [math]E(2,-2,0)[/math]. Four triangles [math]ABC, ACD, ADE[/math] and [math]AEB[/math] are all equilateral triangles.
(a) If the coordinates of [math]A[/math] are [math](a, b, \sqrt{c})[/math] where [math]a, b[/math], and [math]c[/math] are integers, what is the value of [math]a+b+c[/math]?
(b) If cosine of the angle between triangles [math]ABC[/math] and [math]ACD[/math] is [math]\dfrac{1}{\sqrt{p}}[/math] where [math]p[/math] is a positive integer, what is the value of [math]p[/math]?
(a)
(b)
Find the equation of the plane passing through [math](0,0,3), (0,-4,0)[/math], and [math](5,0,0)[/math].
[math]x+[/math] [math]y+[/math] [math]z=[/math]
What is the direction vector of the line fromed by the intersection of planes [math]x+y+z=3[/math] and [math]5x-3y+2z=4[/math]?
Note: Each box contains a whole number
i[math]+[/math] j[math]-[/math] k
Consider line [math]L: \dfrac{x}{2}=\dfrac{y}{-3}=\dfrac{z-1}{2}[/math] and points [math]P(0,0,1)[/math] and [math]Q(2,2,5)[/math]. [math]P[/math] is on [math]L[/math].
(a) Find [math]\text{proj}_{\vec{L}}\overrightarrow{PQ}[/math] where [math]\overrightarrow{L}[/math] is the direction vector of [math]L[/math].
(b) Let [math]L_2[/math] be a line passing through [math]Q[/math] and perpendicular to [math]L[/math]. If [math]L[/math] and [math]L_2[/math] interesect, use (a) to find the equation of [math]L_2[/math].
(a) i[math]+[/math] j[math]+[/math] k
(b) [math]x=2+11t[/math]
[math]y=2+[/math] [math]t[/math]
[math]z=5-[/math] [math]t[/math]
where [math]t[/math] is a real number.
A fly moves along vector [math]\overrightarrow{u}=3\textbf{i}+2\textbf{j}+4\textbf{k}[/math] from the origin. A butterfly moves along vector [math]\overrightarrow{v}=2\textbf{i}+\textbf{j}+3\textbf{k}[/math] from [math](1,1,1)[/math]. Will they crash into each other? Write “Yes” or “No”
(Calculator) Consider plane [math]E: x-2y+2z=3[/math] and line [math]L: x-5=-y+3=\dfrac{z-9}{2}[/math].
(a) Find the acute angle between [math]L[/math] and [math]E[/math].
(b) Let [math]Q[/math] be the intersection of [math]E[/math] and [math]L[/math]. Find the coordinates of [math]Q[/math].
(c) Consider points [math]P(5,3,9)[/math] and [math]P’\in E[/math]. If [math]\overrightarrow{P’P}\perp\overrightarrow{P’Q}[/math]. Find [math]\|\overrightarrow{P’Q}\|[/math].
(a) degrees
(b) ( , , )
(c)