0 of 14 Questions completed
Questions:
You have already completed the quiz before. Hence you can not start it again.
Quiz is loading…
You must sign in or sign up to start the quiz.
You must first complete the following:
0 of 14 Questions answered correctly
Your time:
Time has elapsed
You have reached 0 of 0 point(s), (0)
Earned Point(s): 0 of 0, (0)
0 Essay(s) Pending (Possible Point(s): 0)
If [math]-\sqrt{3}-3i=\sqrt{a}[/math] cis[math]\theta[/math] where [math]a[/math] is an integer and [math]0\leq\theta<2\pi[/math], what are [math]a[/math] and [math]\theta[/math]?
[math]a=[/math] , [math]\theta=[/math] [math]\pi[/math]
If [math]1-i=\sqrt{a}[/math] cis[math]\theta[/math] where [math]a[/math] is an integer and [math]0\leq\theta<2\pi[/math], what are [math]a[/math] and [math]\theta[/math]?
[math]a=[/math] , [math]\theta=[/math] [math]\pi[/math]
Rewrite the following numbers in polar form:
(a) [math]\cos\left(\displaystyle{\frac{\pi}{7}}\right)-i\sin\left(\displaystyle{\frac{\pi}{7}}\right)[/math]
(b) [math]-3\left(\cos\dfrac{2\pi}{5}+i\sin\dfrac{2\pi}{5}\right)[/math]
(c) [math]4\left(\sin\dfrac{\pi}{8}+i\cos\dfrac{\pi}{8}\right)[/math]
(d) [math]15i[/math]
(e) [math]-6[/math]
(a) cis [math]\pi[/math]
(b) cis [math]\pi[/math]
(c) cis [math]\pi[/math]
(d) cis [math]\pi[/math]
(e) cis [math]\pi[/math]
What is [math]\arg(e^{3-5i})[/math]?
Let [math]z_1[/math] and [math]z_2[/math] be complex numbers satisfying, [math]|z_1|=2, |z_2|=5, \arg(z_1)=\dfrac{\pi}{3}[/math], and [math]\arg(z_2)=\dfrac{3\pi}{4}[/math]. Evaluate:
(a) [math]z_1z_2[/math]
(b) [math]\dfrac{z_1}{z_2}[/math]
(c) [math](z_2+z^*_2)^2[/math]
(a) cis [math]\pi[/math]
(b) cis [math]\pi[/math]
(c) cis [math]\pi[/math]
Square [math]ABCD[/math] is on the complex plane. Suppose [math]A=-1+4i[/math] and [math]B=-3[/math]. Find [math]C[/math] and [math]D[/math].
[math]C=[/math] [math]+[/math] [math]i[/math]
[math]D=[/math] [math]+[/math] [math]i[/math]
Let [math]A, B, C\in\mathbb{C}[/math] satisfying [math]|A|=|B|=|C|[/math]. [math]A=\sqrt{2}+\sqrt{2}i[/math] and these numbers form an equilateral triangle. Given that [math]\arg{B}>\arg{C}[/math], find [math]B[/math] and [math]C[/math].
[math]B=[/math] cis [math]\pi[/math]
[math]C=[/math] cis [math]\pi[/math]
What are the modulus and argument of the complex number [math]\dfrac{1}{r(\cos\theta+i\sin\theta)}=\dfrac{1}{r}(\cos(-\theta)+i\sin(-\theta))[/math]?
Let [math]z=5(\cos\theta+i\sin\theta)[/math] where [math]\theta[/math] is in the second quadrant. If [math]\cos\theta=-\dfrac{3}{5}[/math]. Find [math]\arg((z-1)^2)[/math]
[math]\pi[/math]
Evaluate [math]\displaystyle{\sum^{2024}_{k=1}e^{\frac{ik\pi}{2}}}[/math].
Let [math]z[/math] be a complex number satisfying [math]z(\sqrt{3}+i)=-2\sqrt{3}+2i[/math]. Find [math]\arg(z)[/math].
[math]\pi[/math]
Find the arguments of the following complex numbers. Express your answers in integers or fractions.
(a) [math]-6i[/math]
(b) [math]\sqrt{2}-\sqrt{6}i[/math]
(c) [math]3\left(\sin\dfrac{\pi}{7}-i\cos\dfrac{\pi}{7}\right)[/math]
(d) [math]-3\left(\cos\dfrac{3\pi}{8}+i\sin\dfrac{3\pi}{8}\right)[/math]
(e) [math]e^{4+3i}[/math]
(f) [math]e^{20}[/math]
(a) [math]\pi[/math]
(b) [math]\pi[/math]
(c) [math]\pi[/math]
(d) [math]\pi[/math]
(e) [math]+[/math] [math]\pi[/math]
(f) [math]+[/math] [math]\pi[/math]
Let [math]z_1[/math] and [math]z_2[/math] be complex numbers satisfying [math]i^3z_1=2z^*_2[/math]. Suppose [math]|z_1|=3[/math] and [math]\arg(z_1)=\dfrac{3\pi}{5}[/math]. Find [math]z_2[/math].
cis [math]\pi[/math]
[math]A=z_1, B=z_2[/math], and [math]C=z_3[/math] are three complex numbers on the plane. Given that [math]ABC[/math] is a right isosceles triangle and [math]\angle B=90^\circ[/math],
(a) show that [math](z_1-z_2)^2=-(z_2-z_3)^2[/math].
(b) find [math]D[/math] such that [math]ABCD[/math] is a square.
This response will be awarded full points automatically, but it can be reviewed and adjusted after submission.