0 of 15 Questions completed
Questions:
You have already completed the quiz before. Hence you can not start it again.
Quiz is loading…
You must sign in or sign up to start the quiz.
You must first complete the following:
0 of 15 Questions answered correctly
Your time:
Time has elapsed
You have reached 0 of 0 point(s), (0)
Earned Point(s): 0 of 0, (0)
0 Essay(s) Pending (Possible Point(s): 0)
[math](3-\sqrt{3}i)^6=-a^b[/math] where [math]a[/math] and [math]b[/math] are integers, what is the value of [math]b[/math]?
Evaluate:
(a) [math]\left(2\left(\cos\dfrac{3\pi}{5}+i\sin\dfrac{3\pi}{5}\right)\right)^{-5}[/math]
(b) [math]\left(\dfrac{2}{1-i}\right)^{10}[/math]
(a) [math]+[/math] [math]i[/math]
(b) [math]+[/math] [math]i[/math]
Let [math]z[/math] be a complex number satisfying [math]|z|=3[/math] and [math]\arg(z)=\theta[/math]. Find the moduli and arguments of the following numbers.
(a) [math]\dfrac{1}{z^4}[/math]
(b) [math]iz^2[/math]
(c) [math]\dfrac{z^3}{i}[/math]
(a) Modulus: , Argument: [math]\theta+[/math] [math]\pi[/math]
(b) Modulus: , Argument: [math]\theta+[/math] [math]\pi[/math]
(c) Modulus: , Argument: [math]\theta+[/math] [math]\pi[/math]
Find the square roots of the following numbers
(a) [math]-i[/math]
(b) [math]\dfrac{-1+\sqrt{3}i}{2}[/math]
(a) [math]\pm[/math]cis [math]\pi[/math]
(b) [math]\pm[/math]cis [math]\pi[/math]
Let [math]z_1, z_2, \cdots, z_8[/math] be the solutions of [math]x^8=1[/math] where [math]\arg(z_1)<\arg(z_2)<\arg(z_3)<\cdots<\arg(z_8)[/math]. If the area of polygon [math]z_1z_2z_3\cdots z_8[/math] is [math]\sqrt{a}[/math] where [math]a[/math] is an integer, what is the value of [math]a[/math]?
Solve the following equations. Express your answers in integers or fractions.
(a) [math]z^5=-32[/math]
(b) [math]z^{12}=-\dfrac{1}{2}+\dfrac{\sqrt{3}}{2}i[/math]
(a) cis( [math]\pi+[/math] [math]k\pi[/math]) where [math]k=0, 1, 2,\cdots,[/math]
(b) cis( [math]\pi+[/math] [math]k\pi[/math]) where [math]k=0, 1, 2,\cdots,[/math]
Find the minimum positive integer [math]n[/math] such that [math]3\left(\cos\frac{3\pi}{8}+i\sin\frac{3\pi}{8}\right)^n[/math] is a pure imaginary number.
Evaluate [math]\displaystyle{\sum^{17}_{k=1}\sin\left(\frac{2k\pi}{17}\right)}[/math].
Let [math]\omega[/math] be a nonreal solution of the equation [math]\omega^{24}=1[/math]. Evaluate [math]\displaystyle{\sum^{23}_{k=0}\omega^k}[/math]
Let [math]z_1[/math] and [math]z_2[/math] be complex numbers. Suppose [math]|z_1|=2, |z_2|=3, \arg(z_1)=\dfrac{\pi}{12}[/math] and [math]\arg(z_2)=\dfrac{5\pi}{12}[/math]. Find the moduli and arguments of the following numbers. Express your answers in integers or fractions.
(a) [math]z^5_1[/math]
(b) [math]\dfrac{z^3_1}{z_2}[/math]
(c) [math]z_1z^*_2[/math]
(d) [math]z^{-4}_1z^3_2[/math]
(a) Modulus: , Argument: [math]\pi[/math]
(b) Modulus: , Argument: [math]\pi[/math]
(c) Modulus: , Argument: [math]\pi[/math]
(d) Modulus: , Argument: [math]\pi[/math]
Let [math]\omega[/math] be a complex solution of the equation [math]x^3=1[/math]
(a) Evaluate [math]\omega^2+\omega+1=0[/math].
(b) Evaluate [math](\omega+3)(\omega^2+3)(\omega^3+3)(\omega^4+3)(\omega^5+3)[/math].
(a)
(b)
Let [math]z[/math] be a complex number with modulus 1. Given that [math]\dfrac{1+z}{1+z^*}=z[/math], what is the value of [math]\left(\dfrac{1+\cos\frac{\pi}{3}-i\sin\frac{\pi}{3}}{1+\cos\frac{\pi}{3}+i\sin\frac{\pi}{3}}\right)^3[/math]?
Note: [math]\dfrac{1+z}{1+z^*}=z[/math] is an identity. You can try to verify it.
[math]+[/math] [math]i[/math]
Let [math]R[/math] be a pentagon with vertices [math]z_1, z_2, \cdots, z_5[/math]. These vertices are the solutions to the equation [math]x^5+x^4+x^3+x^2+x+1=0[/math]. If the area of [math]R[/math] is [math]a\sqrt{b}[/math] where [math]a[/math] is a rational number and [math]b[/math] is a prime number, what is the value of [math]ab[/math]?
Let [math]z[/math] be a complex number with modulus 1 and [math]\arg(z)=\dfrac{3\pi}{14}[/math]. Find the maximum negative integers [math]m[/math] and [math]n[/math] such that [math]z^m[/math] is a real number and [math]z^n[/math] is a pure imaginary number.
[math]m=[/math] , [math]n=[/math]
Let [math]z[/math] be a complex number. Suppose [math]|z|=1[/math] and [math]\arg(z)=\theta[/math]
(a) [math]z^n-z^{-n}=2i\sin\theta[/math].
(b) Show that [math]\sin3\theta=3\sin\theta-4\sin^3\theta[/math].
This response will be awarded full points automatically, but it can be reviewed and adjusted after submission.