0 of 19 Questions completed
Questions:
You have already completed the quiz before. Hence you can not start it again.
Quiz is loading…
You must sign in or sign up to start the quiz.
You must first complete the following:
0 of 19 Questions answered correctly
Your time:
Time has elapsed
You have reached 0 of 0 point(s), (0)
Earned Point(s): 0 of 0, (0)
0 Essay(s) Pending (Possible Point(s): 0)
If [math]\begin{bmatrix}-2&4\\18&6\end{bmatrix}+\begin{bmatrix}1&3\\6&4\end{bmatrix}=\begin{bmatrix}a&b\\c&d\end{bmatrix}[/math] what are [math]a, b, c[/math], and [math]d[/math]?
[math]a=[/math] , [math]b=[/math]
[math]c=[/math] , [math]d=[/math]
If [math]A=\begin{bmatrix}6&0&1\\2&3&7\\6&4&5\end{bmatrix}-\begin{bmatrix}9&0&2\\7&0&3\\1&8&-4\end{bmatrix}[/math], what are [math]a_{31}+a_{23}[/math]?
If [math]3\begin{bmatrix}1&7\\4&-5\end{bmatrix}-2\begin{bmatrix}7&-1\\-4&0\end{bmatrix}=\begin{bmatrix}a&b\\c&d\end{bmatrix}[/math] what are [math]a, b, c[/math], and [math]d[/math]?
[math]a=[/math] , [math]b=[/math]
[math]c=[/math] , [math]d=[/math]
What is the maximum entry of the matrix [math]\displaystyle{\frac{1}{2}}\left(\begin{bmatrix}-5&3&9\\3&8&-1\end{bmatrix}+\begin{bmatrix}1&5&3\\7&-2&5\end{bmatrix}\right)[/math]?
If [math]\begin{bmatrix}-1&19\\2&3\end{bmatrix}\begin{bmatrix}2&0\\0&2\end{bmatrix}=\begin{bmatrix}a&b\\c&d\end{bmatrix}[/math] what are [math]a, b, c[/math], and [math]d[/math]?
[math]a=[/math] , [math]b=[/math]
[math]c=[/math] , [math]d=[/math]
What is the maximum entry of the matrix [math]\begin{bmatrix}7&3\\8&4\end{bmatrix}\begin{bmatrix}2&6&8&5\\6&0&0&1\end{bmatrix}[/math]?
What is the dimension of [math]\begin{bmatrix}1&0\\2&4\end{bmatrix}\begin{bmatrix}2&5\\6&1\\0&4\end{bmatrix}[/math]?
Let [math]A=\begin{bmatrix}1&-3\\-2&7\end{bmatrix}[/math] and [math]B=\begin{bmatrix}2&7\\3&4\end{bmatrix}[/math]. If matrix [math]X=\begin{bmatrix}a&b\\c&d\end{bmatrix}[/math] is the solution to the equation [math]A-2X=B[/math], what is [math]X[/math]?
[math]a=[/math] , [math]b=[/math]
[math]c=[/math] , [math]d=[/math]
Which of the following matrix equations is equivalent to the equations system [math]\begin{cases}x+2y=7\\3x-4y=16\end{cases}[/math]?
If the equations system [math]\begin{cases}x+z=10\\-x+2y+z=6\\3y-5z+7=0\end{cases}[/math] can be written as a matrix equation [math]AX=B[/math] where [math]X=\begin{bmatrix}x\\y\\z\end{bmatrix}[/math] what is the value of [math]a_{32}+b_{11}[/math]?
Consider two matrices [math]A=\begin{bmatrix}-2&a\\6&b\end{bmatrix}[/math] and [math]B=\begin{bmatrix}3&12\\c&0\end{bmatrix}[/math]. If [math]B=kA[/math] where [math]k[/math] is a constant, find [math]a, b[/math], and [math]c[/math].
[math]a=[/math]
[math]b=[/math]
[math]c=[/math]
Let [math]A_{20\times30}[/math] be a matrix. If [math]a_{ij}=(i-2j)^2[/math], how many antries in [math]A[/math] are [math]0[/math]?
If [math]A=\begin{bmatrix}1&8&9&4\\1&9&4&1\\1&9&4&9\\2&0&2&5\end{bmatrix}[/math] and [math]B=A^2[/math], what is [math]b_{31}[/math]?
Let [math]A[/math] be a matrix satisfying [math]A^2-3A+2I=0[/math]. Express the following matrices in terms of [math]A[/math] and [math]I[/math]
(a) [math]A^3[/math]
(b) [math]A^4[/math]
(a) [math]A^3=[/math] [math]A+[/math] [math]I[/math]
(b) [math]A^4=[/math] [math]A+[/math] [math]I[/math]
(Calculator) Let [math]A=\begin{bmatrix}-3&-2\\2&-1\\1&0\end{bmatrix}, B=\begin{bmatrix}-3&4&-5\\5&-4&3\end{bmatrix}[/math], and [math]C=\begin{bmatrix}7&-2&5\\1&2&1\end{bmatrix}[/math].
(a) What is the minimum entry of the matrix [math]2B-C[/math]?
(b) If [math]D=A(B+C)[/math], what is the value of [math]d_{13}+d_{21}[/math]?
(c) How many positive entries does the matrix [math]BA[/math] have?
(a)
(b)
(c)
Consider three matrices [math]A_{3\times4}, B_{2\times4}[/math] and [math]C_{4\times2}[/math]. Which of the following matrices is/are undefined?
Let [math]A_{2\times2}[/math] be a matrix and [math]a_{11}=p, a_{12}=1[/math]. Suppose [math]A^2=0[/math]. Represent the following entries in terms of [math]p[/math] and [math]q[/math].
(a) [math]a_{21}[/math]
(b) [math]a_{22}[/math]
(a) [math]p^2+[/math] [math]p+[/math]
(b) [math]p^2+[/math] [math]p+[/math]
Let [math]A=\begin{bmatrix}1&2\\-1&-3\end{bmatrix}[/math]
(a) Find constants [math]p, q[/math] such that [math]A^2=pA+qI[/math]
(b) Hence, represent [math]A^3[/math] in terms of [math]A[/math] and [math]I[/math].
(a) [math]p=[/math] , [math]q=[/math]
(b) [math]A+[/math] [math]I[/math]
Let [math]A[/math] be a [math]2018\times2018[/math] matrix and [math]a_{ij}=2i-j[/math]. Find the maximum entry of [math]A[/math]