0 of 10 Questions completed
Questions:
You have already completed the quiz before. Hence you can not start it again.
Quiz is loading…
You must sign in or sign up to start the quiz.
You must first complete the following:
0 of 10 Questions answered correctly
Your time:
Time has elapsed
You have reached 0 of 0 point(s), (0)
Earned Point(s): 0 of 0, (0)
0 Essay(s) Pending (Possible Point(s): 0)
Evaluate:
(a) [math]\begin{vmatrix}1&0\\3&7\end{vmatrix}[/math]
(b) [math]\begin{vmatrix}2&-9\\3&8\end{vmatrix}[/math]
(c) [math]\begin{vmatrix}1&-2&2\\3&-13&4\\9&0&9\end{vmatrix}[/math]
(d) [math]\begin{vmatrix}9&98&99\\0&8&97\\0&0&7\end{vmatrix}[/math]
(a)
(b)
(c)
(d)
Let [math]\begin{vmatrix}a&b&c\\d&e&f\\g&h&i\end{vmatrix}=1[/math]. Evaluate:
(a) [math]\begin{vmatrix}c&2b&a\\f&2e&d\\3i&6h&3g\end{vmatrix}[/math]
(b) [math]\begin{vmatrix}g&a&d\\h&b&e\\i&c&f\end{vmatrix}[/math]
(c) [math]\begin{vmatrix}a+b&b+c&c+a\\d+e&e+f&f+d\\g+h&h+i&i+g\end{vmatrix}[/math]
(a)
(b)
(c)
Consider a matrix [math]A=\begin{bmatrix}a&-b\\c&-a\end{bmatrix}[/math] where [math]a, b[/math], and [math]c[/math] are real numbers. If [math]\det(A)=2[/math], what is the value of [math]\det(A+A^{-1})[/math]?
What is the coefficient of [math]x^2[/math] of the determinant [math]\begin{vmatrix}x+1&-17&32\\61&2x+1&-9\\10&23&3x+1\end{vmatrix}[/math]?
Let [math]A=\begin{vmatrix}1&2&0&0\\4&3&0&0\\0&0&5&6\\0&0&8&7\end{vmatrix}[/math]. If [math]C_{ij}[/math] is the cofactor of [math]A[/math], what is [math]C_{11}+C_{22}+C_{33}+C_{44}[/math]?
Let [math]a, b, c\in\mathbb{R}[/math]. Use the identity [math]\begin{vmatrix}1&1&1\\a&b&c\\a^2&b^2&c^2\end{vmatrix}=(a-b)(b-c)(c-a)[/math] to evaluate:
(a) [math]\dfrac{a}{(a-b)(a-c)}+\dfrac{b}{(b-c)(b-a)}+\dfrac{c}{(c-a)(c-b)}[/math]
(b) [math]\dfrac{a^2}{(a-b)(a-c)}+\dfrac{b^2}{(b-c)(b-a)}+\dfrac{c^2}{(c-a)(c-b)}[/math]
Note: The determinant is called the Vandermonde determinant.
(a)
(b)
Evaluate:
(a) [math]\begin{vmatrix}-5&4\\-3&8\end{vmatrix}[/math]
(b) [math]\begin{vmatrix}1&0&2\\3&5&9\\-2&-3&0\end{vmatrix}[/math]
(c) [math]\begin{vmatrix}-4&3&-2\\3&0&3\\4&7&1\end{vmatrix}[/math]
(a)
(b)
(c)
Find [math]x[/math] such that [math]\begin{bmatrix}1-x&1\\6&2-x\end{bmatrix}[/math] is a singular matrix. If you have two or more answers, write the smallest one.
(Calculator) Let [math]A=\begin{bmatrix}1&-9&7&-1\\0&8&-4&-7\\1&4&5&0\\-3&-9&2&6\end{bmatrix}[/math]. Evaluate [math]C_{21}[/math].
Let [math]A(2,-1), B(4,0), C(-3,5)[/math] be three points on a plane. Find the area of the triangle [math]ABC[/math].