0 of 8 Questions completed
Questions:
You have already completed the quiz before. Hence you can not start it again.
Quiz is loading…
You must sign in or sign up to start the quiz.
You must first complete the following:
0 of 8 Questions answered correctly
Your time:
Time has elapsed
You have reached 0 of 0 point(s), (0)
Earned Point(s): 0 of 0, (0)
0 Essay(s) Pending (Possible Point(s): 0)
If [math]\displaystyle{\frac{2x+1-\frac{x-1}{2x+1}}{1-\frac{1}{2x+1}}}[/math] can be written as [math]\dfrac{ax^2+bx+c}{dx+e}[/math] where [math]a, b, c, d[/math], and [math]e[/math] are integers, what are [math]a, b, c, d[/math], and [math]e[/math]?
[math]a=[/math]
[math]b=[/math]
[math]c=[/math]
[math]d=[/math]
[math]e=[/math]
If [math]\displaystyle{\frac{1}{\frac{1}{x+1}+\frac{1}{x-1}}}[/math] can be written as [math]\dfrac{ax^2+bx+c}{dx+e}[/math] where [math]a, b, c, d[/math], and [math]e[/math] are integers, what are [math]a, b, c, d[/math], and [math]e[/math]?
[math]a=[/math]
[math]b=[/math]
[math]c=[/math]
[math]d=[/math]
[math]e=[/math]
Which of the following expressions is equivalent to [math]\left(\dfrac{x}{x+1}+x\right)^{-1}[/math]?
[math]\dfrac{\quad\frac{x-3}{x^2+6}\quad}{\frac{x^2-9}{x+3}}=\dfrac{p(x)}{q(x)}[/math] where [math]p(x)[/math] and [math]q(x)[/math] are polynomials. If the leading coefficient of [math]q(x)[/math] is 1 and [math]q(x)[/math] is quadratic, what is [math]p(2025)[/math]?
If [math]\dfrac{\frac{3x+1}{x^2-x-12}+3}{\frac{3}{x-4}+\frac{4}{x+3}}[/math] can be written as [math]\dfrac{ax^2+bx+c}{dx+e}[/math] where [math]a, b, c, d[/math], and [math]e[/math] are integers, what are [math]a, b, c, d[/math], and [math]e[/math]?
[math]a=[/math]
[math]b=[/math]
[math]c=[/math]
[math]d=[/math]
[math]e=[/math]
[math]\dfrac{4-\frac{8x}{x^2+1}}{x-1}=\dfrac{p(x)}{q(x)}[/math] where [math]p(x)[/math] and [math]q(x)[/math] are polynomials. If the leading coefficient of [math]q(x)[/math] is 1, what is the leading coefficient of [math]p(x)[/math]?
Which of the following expressions is equivalent to [math]\dfrac{\frac{1}{x+h+2}-\frac{1}{x+2}}{\frac{1}{h}}[/math]?
Which of the following is equivalent to [math]\displaystyle{\frac{\displaystyle{\frac{8}{7x}}}{\displaystyle{\frac{-4}{x+1}}}}[/math]?