0 of 9 Questions completed
Questions:
You have already completed the quiz before. Hence you can not start it again.
Quiz is loading…
You must sign in or sign up to start the quiz.
You must first complete the following:
0 of 9 Questions answered correctly
Your time:
Time has elapsed
You have reached 0 of 0 point(s), (0)
Earned Point(s): 0 of 0, (0)
0 Essay(s) Pending (Possible Point(s): 0)
Let [math]x[/math] be a positive integer.
(a) Find constants [math]a[/math] and [math]b[/math] such that [math]\dfrac{2}{x^2+2x}=\dfrac{a}{x}+\dfrac{b}{x+2}[/math].
(b) If [math]\dfrac{2}{x(x+2)}+\dfrac{2}{(x+2)(x+4)}+\dfrac{2}{(x+4)(x+6)}+\cdots+\dfrac{2}{(x+98)(x+100)}=\dfrac{1}{200}[/math], what is the value of [math]x[/math]?
(a) [math]a=[/math] , [math]b=[/math]
(b)
(Calculator) If [math]\displaystyle{\frac{x+12}{x^2-x-6}}=\dfrac{a}{x-3}+\dfrac{b}{x+2}[/math] where [math]a[/math] and [math]b[/math] are integers, what is [math]a+b[/math]?
(Calculator) If [math]\displaystyle{\frac{2x+3}{(x+1)^2}}=\dfrac{a}{x+1}+\dfrac{b}{(x+1)^2}[/math] where [math]a[/math] and [math]b[/math] are integers, what is [math]a+b[/math]?
(Calculator) If [math]\displaystyle{\frac{4x^2+9x-4}{(x-1)(x+2)^2}}=\dfrac{a}{x-1}+\dfrac{b}{x+2}+\dfrac{c}{(x+2)^2}[/math] where [math]a, b[/math] and [math]c[/math] are integers, what are [math]a, b[/math], and [math]c[/math]?
[math]a=[/math]
[math]b=[/math]
[math]c=[/math]
(Calculator) If [math]\displaystyle{\frac{5x^2+2x+2}{x^3-1}}=\dfrac{a}{x-1}+\dfrac{bx+c}{x^2+x+1}[/math] where [math]a, b[/math], and [math]c[/math] are integers, what is the value of [math]b[/math]?
(Calculator) If [math]\displaystyle{\frac{-4x+7}{(x+5)^2}}=\dfrac{a}{x+5}+\dfrac{b}{(x+5)^2}[/math] where [math]a[/math] and [math]b[/math] are integers, what is the value of [math]a+b[/math]?
(Calculator) If [math]\displaystyle{\frac{2x^2+3x}{x^2-3x+2}}=a+\dfrac{b}{x-2}+\dfrac{c}{x-1}[/math] where [math]a, b[/math], and [math]c[/math] are integers, what is the value of [math]c[/math]?
If [math]\dfrac{17x-53}{x^2-2x-15}=\dfrac{a}{x+3}+\dfrac{b}{x-5}[/math] where [math]a[/math] and [math]b[/math] are integers, what is the value of [math]b[/math]?
(Calculator) Find the values of [math]A, B, C, D[/math] and [math]E[/math] that satisfy the following equation.$$\dfrac{-4x^4+10x^3+14x^2+6x}{x(x-3)(x-1)(x+1)(x+2)}=\dfrac{A}{x}+\dfrac{B}{x-3}+\dfrac{C}{x-1}+\dfrac{D}{x+1}+\dfrac{E}{x+2}$$
[math]A=[/math]
[math]B=[/math]
[math]C=[/math]
[math]D=[/math]
[math]E=[/math]